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We propose generalization of the escape rate from a metastable state for externally driven correlated noise
processes in one dimension. In addition to the internal non-Markovian thermal fluctuations, the external
correlated noise processes we consider are Gaussian, stationary in nature and are of Ornstein-Uhlenbeck type.
Based on a Fokker-Planck description of the effective noise processes with finite memory we derive the
generalized escape rate from a metastable state in the moderate-to-large damping limit and investigate the
effect of degree of correlation on the resulting rate. Comparison of the theoretical expression with numerical
simulation gives a satisfactory agreement and shows that by increasing the degree of external noise correlation
one can enhance the escape rate through the dressed effective noise strength.
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I. INTRODUCTION

The theory of fluctuation-induced barrier-crossing dynam-
ics was first discussed in the seminal paper by Kramers �1�,
where he considered a thermalized Brownian particle trapped
in a one-dimensional well separated by a barrier of finite
height from a deeper well. The particle was supposed to
interact with the environmental degrees of freedom that act
as a thermal reservoir. The thermal environment exerts a
damping force on the particle but simultaneously thermally
activates it so that the particle effectively gains enough en-
ergy to cross the barrier of finite height. Since its inception,
Kramers’ model has been extensively revisited both theoreti-
cally �2–4� and experimentally �5–7� constituting a vast body
of literature �8,9�.

One of the essential conditions of the traditional approach
to study activated rate processes is the maintenance of a bal-
ance between the two opposing forces, the thermal fluctua-
tions and the dissipation, which the Brownian particle expe-
riences while in contact with the thermal bath. Since these
two counterbalancing forces have a common origin, the heat
bath, it can be shown easily that they are connected by
fluctuation-dissipation relation �FDR� �10�. A typical signa-
ture of FDR is that in the long time limit the Brownian
particle attains an equilibrium Boltzmann distribution for an
initial canonical distribution of the bath’s degrees of freedom
�11�. In nonequilibrium statistical mechanical terminology,
such systems are referred to as a closed system �12�. It may
happen sometime that an additional source of energy in the
form of fluctuations can be pumped from outside for which
there is no counterbalancing force as dissipation �13–16�. In
the absence of FDR, such external input of energy makes the
system open and, in contrast to the closed system, the equi-
librium Boltzmann distribution gets replaced by a steady-

state distribution �SSD� in the long time limit. It may there-
fore be anticipated that the absence of FDR tends to make
the SSD function dependent on the strength and correlation
time of external noise as well as on the dissipation of the
system �14–16�. It is pertinent to point out that although
thermodynamically closed systems with homogeneous
boundary conditions possess, in general, time-dependent so-
lution, the driven open systems may settle down to be com-
plicated multiple steady states when one takes into account
the nonlinearity of the systems.

The origin of the noise in the thermodynamically open
system driven by two or more random forces may be differ-
ent. The barrier-crossing dynamics with multiplicative and
additive noises initiated strong interest in the early 1980s.
The noise forces which appeared in the dynamical system
were usually treated as random variables uncorrelated with
each other. However, there are situations where noises in
some open systems may have common origin. If this hap-
pens, then the statistical properties of the noises should not
be much different and can be correlated with each other. The
cross-correlated noises were first considered by Fedchenia
�17� in the context of hydrodynamics of vortex flow. The
interference of additive and multiplicative white noises in the
kinetics of the bistable systems was analyzed by Fulinski and
Telejko �18�. Maduriera et al. �19� have pointed out the prob-
ability of cross-correlated noise in the ballast resistor model
showing bistable behavior of the system. Mei et al. �20� have
studied the effects of correlations between additive and mul-
tiplicative noise on the relaxation of the bistable system
driven by cross-correlated noises. It is now well accepted
that the effect of correlation between additive and multipli-
cative noise is indispensable in explaining phenomena such
as phase transition, transport of motor proteins, etc. �21�. As
the presence of the cross-correlated noises changes the dy-
namics of the system �22�, it is expected that there may exist
some additional effect of cross correlation on the barrier-
crossing dynamics. The study of this additional effect acted
precisely as the catalyst that triggered the present study.
From our formal development and corresponding numerical
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application, it will be revealed that the strength of correlation
of noise process has pronounced effect on the behavior of the
escape rate of the barrier-crossing process.

We now discuss the physical motivation of our model.
One can think about a system, simultaneously coupled to two
different heat baths. The two heat baths are in turn driven
externally by a random force ��t� �say�. The responses of ��t�
to the two baths are different. Now, if the system-bath cou-
pling is linear, apart from thermal noises due to the presence
of heat baths, the system will encounter two additive dressed
noises �dressed due to the bath external noise coupling�. As
both the baths are modulated by the same noise with differ-
ent responses, the dressed noises will be mutually correlated.
Another simple model can be invoked by considering the
following system-reservoir Hamiltonian: H=HS+HSB+Hint,
where HS= p2 /2+V�x� is the system Hamiltonian and HSB

=� j�pj
2+� j

2�qj −cjx�2� /2 is the bath Hamiltonian �with inter-
action term between the system and the heat bath�, where the
heat bath is assumed to be consisting of harmonic oscillators
with characteristic frequency set �� j�, as well as �qj , pj�, bath
variables, and Hint=� j�� jqj��t�+� jpj��t��. While writing the
Hamiltonian we have considered the unit mass of the system
and the bath oscillators. In this model, initially the bath is in
thermal equilibrium at the temperature T in the presence of
the system, and then it is externally modulated by a noise
��t�. The coupling between the bath and the noise is such that
it linearly excites both positions qj and momenta pj of the
bath with the different coupling constants � j and � j, respec-
tively. If we now construct the equation of motion for the
system variable, it can be easily shown that the equation will
contain, apart from the thermal noise, two additive mutually
correlated noises. As a more physically motivated example,
one can consider a typical photochemical reaction where
both reactant and solvent are exposed to a weakly fluctuating
light source. In such a case, the reactant will be driven by
two noises: first, the external noise due to the fluctuating
light source and second, due to the presence of the solvent
which is also driven by the light source �16�. These two
noises will also be correlated as both the reactant and the
solvent are exposed to the same fluctuating light source. The
above-mentioned physical examples lend firm support to our
study presented in this paper.

The organization of the present work is as follows. In the
next section �Sec. II� we briefly describe the phenomenologi-
cal model for a system driven by cross-correlated external
fluctuations and characterize the statistical properties of ex-
ternal driving. In Sec. III we derive the generalized escape
rate from a metastable state and show different limiting cases
in the moderate-to-large dissipation regime. Computational
details and results are provided in Sec. IV. The paper is con-
cluded in Sec. V.

Before embarking on a discussion of the development and
application of our theory for escape rate from a metastable
state driven by external cross-correlated noise processes, in
the next section, we will discuss the essential ideas of our
model. This will motivate us toward the types of physically
appealing approximations needed in generating the required
rate equations.

II. THE MODEL

To start with we consider the motion of a Brownian par-
ticle of unit mass moving in an external force field V�x�. In
the course of its dynamics, the particle experiences a random
force f�t�, as well as a counterbalancing frictional force ��t�,
both originating from the immediate thermal environment,
the heat bath, to which the particle is in contact. Since the
aforesaid forces have a common origin they are connected by
the FDR �see Eq. �2� below� �10�. Apart from the internal
thermal noise, we assume that the particle is driven by two
external nonthermal, stationary, Gaussian, Ornstein-
Uhlenbeck noise processes, ��t� and ��t�, both of which are
correlated with each other by the correlation parameter �.
The dynamics of the particle can then be described by the
following generalized Langevin equation:

ẍ + �
0

t

��t − t��ẋ�t��dt� + V��x� = f�t� + ��t� + ��t� . �1�

Here the friction kernel ��t� is connected to the internal noise
f�t� by the FDR of the second kind �10�,

	f�t�f�t��
 = kBT��t − t�� , �2�

where T is the thermal equilibrium temperature and kB is the
Boltzmann constant. The form of the Langevin equation �1�
we have considered here guarantees that the nature of the
dynamics is of non-Markovian type and it is due to the finite
correlation effect of the thermal environment on the Brown-
ian particle. The nature of the dissipation kernel ��t� is very
much dependent on the nature of the coupling of the particle
to the heat bath and on the distribution of the bath modes
�11�. In the limit of vanishing correlation effect and for in-
stantaneous dissipation, i.e., for Markovian dynamics, Eq.
�2� reduces to 	f�t�f�t��
=2�kBT��t− t�� with � being the dis-
sipation constant.

At this point it is pertinent to mention that by the appli-
cation of an external random force, fluctuations are created in
a deterministic system. For example, one may cite a noise
generator inserted into an electric circuit or a growth of
species under the influence of random weather. For such
cases, the external fluctuating force is never completely
�-correlated or white. On the other hand, the internal or in-
trinsic noise is caused by the thermal fluctuations created due
to the coupling with the environmental degrees of freedom
and cannot be completely switched off. In general, the physi-
cal processes concerning chemical reactions, growth of
population, etc., are of the latter type. For an illuminating
discussion in this context we refer to the literature of van
Kampen �23�. At this point we note that a system where
internal noise is always present can be driven by external
noise also. From a microscopic point of view, the above Eqs.
�1� and �2� can be derived from a Hamiltonian, where the
system is coupled with a heat bath consisting of a set of
harmonic oscillators with different characteristic frequencies
�11� and is simultaneously driven by two external, cross-
correlated noises, ��t� and ��t�. The system-bath interaction
generates the internal noise f�t�, statistical properties of
which will depend on the frequency spectrum of the heat
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bath and on the nature of the system-reservoir coupling. For
a finite correlation time 	c �which can be considered as in-
verse of the cutoff frequency of the bath�, the internal noise
will be colored, while for 	c→0, the noise will be
�-correlated or white. Furthermore, the nonlinear system-
reservoir coupling yields multiplicative noise while bilinear
coupling gives additive noise. For further discussion, we re-
fer to the literature of Lindenberg and West �12�. In our
present study, all of the noises have been assumed to be
colored and additive.

The external noise processes we have considered are in-
dependent of the dissipation kernel; hence there exist no cor-
responding FDR for them. In addition to that, we also as-
sume that the external noises do not influence the internal
noise process and hence ��t� and ��t� are statistically inde-
pendent of f�t�. The physical situation we address here is that
the system is in thermal equilibrium at t=0 in presence of the
thermal bath but in absence of the external noise processes.
At t=0+, the external fluctuations are switched on and the
system is driven by the two external noises ��t� and ��t�
which are correlated with each other. The system dynamics is
then governed by the generalized Langevin equation �1�. We
characterize the statistical properties of the correlated exter-
nal fluctuations by the following set of equations:

	��t�
 = 	��t�
 = 0, �3a�

	��t���t��
 =
D�

	�

exp�−
�t − t��

	�

 , �3b�

	��t���t��
 =
D�

	�

exp�−
�t − t��

	�

 , �3c�

	��t���t��
 = 	��t���t��
 =
��D�D��1/2

	
exp�−

�t − t��
	


 .

�3d�

In the above equations, D� and 	� are the strength and
correlation time of the noise ��t�, while D� and 	� corre-
spond to the noise ��t�. � denotes the degree of correlation
between the noise processes ��t� and ��t�. At this point, we
define 
�t� �
�t�= ���t�+��t��� as the effective external noise
process whose statistical properties can be defined using the
properties of ��t� and ��t�. Our following analysis will be
based on this effective noise 
�t�, and we shall study the
dependence of physical quantities in terms of this effective
noise 
�t� and the effective correlation time. Since both the
noise processes are Gaussian and simultaneously stationary
with zero mean, 
�t� will also be stationary Gaussian with
zero mean. Furthermore, the second moment of 
�t� is given
by

	
�t�
�t��
 =
DR

	R
exp�−

�t − t��
	R


 , �4�

where the strength DR and the correlation time 	R of the
effective noise can be written as

DR = �
0

�

dt	
�t�
�0�
 = D� + 2��D�D� + D�, �5�

	R =
1

DR
�

0

�

t	
�t�
�0�
dt =
1

DR
�D�	� + 2��D�D�	 + D�	�� .

�6�

It is apparent from Eqs. �4�–�6� that variation of the degree of
correlation � will change the strength and correlation time of
the effective noise.

From Eqs. �4�–�6� it is clear that because of the cross
correlation, the Brownian particle realizes the effect of two
external noise processes by the effective noise process 
�t�,
with the effective noise strength DR and the noise correlation
time 	R containing the noise strength and correlation time of
��t� and ��t�, and the degree of noise correlation parameter
�.

III. GENERALIZATION OF THE ESCAPE RATE

The modifications of the standard escape rate from a
metastable state in the presence of correlated fluctuations are
twofold. First, in the presence of the external correlated fluc-
tuations, the dynamics around the barrier top get affected in
such a way that the stationary flux across the barrier top gets
modified. Second, the equilibrium Boltzmann distribution at
the source well get replaced by a steady-state distribution
reflecting the signature of extra energy input due to the open
system. With these major changes in the dynamics we then
derive the generalized escape rate and show various limits of
the rate expression in the following analysis.

To analyze the dynamics across the barrier top we first
linearize the potential V�x� around the barrier top at x�0,

V�x� = Eb −
1

2
�b

2x2 + ¯ , �b
2 � 0, �7�

where �b is the linearized frequency at the barrier top and Eb
�=V�0�� is the barrier height. Thus, the linearized version of
the Langevin equation �1� takes the form

ẍ + �
0

t

��t − t��ẋ�t��dt� − �b
2x = F�t� , �8�

where F�t� is defined as

F�t� = f�t� + 
�t� . �9�

The general solution of Eq. �7� is given by

x�t� = 	x�t�
 + �
0

t

Mb�t − t��F�t��dt�, �10�

where

	x�t�
 = v0Mb�t� + x0
x
b�t� �11�

with x0=x�0� and v0= ẋ�0� being the initial position and ve-
locity of the particle, and
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x
b�t� = 1 + �b

2�
0

t

Mb�t��dt�. �12�

The kernel Mb�t� is the Laplace inverse of

M̃b�s� =
1

s2 + s�̃�s� − �b
2 �13�

with �̃�s�=�0
�exp�−st���t�dt being the Laplace transform of

��t�. The time derivative of Eq. �10� gives

v�t� = 	v�t�
 + �
v

t

mb�t − t��F�t��dt�, �14�

where

	v�t�
 = v0mb�t� + �b
2x0Mb�t� �15�

and

mb�t� =
dMb�t�

dt
. �16�

As both the internal and external noise processes are station-
ary, one can explicitly use the stationary property of these
fluctuations to write the correlation function of F�t� as
	F�t�F�t��
=c�t− t�� along with the symmetry condition
c�t− t��=c�t�− t�. Using this form of stationarity we calculate
the variances in terms of Mb�t� and mb�t� as

�xx
2 �t� = 	�x�t� − 	x�t�
�2


= 2�
0

t

Mb�t1�dt1�
0

t1

Mb�t2�c�t1 − t2�dt2, �17�

�vv
2 �t� = 	�v�t� − 	v�t�
�2


= 2�
0

t

mb�t1�dt1�
0

t1

mb�t2�c�t1 − t2�dt2, �18�

�xv
2 �t� = 	�x�t� − 	x�t�
��v�t� − 	v�t�
�


= �
0

t

mb�t1�dt1�
0

t

Mb�t2�c�t1 − t2�dt2. �19�

From Eqs. �17� and �19� we observe that

�xv
2 �t� = �̇xx

2 �t�/2. �20�

Using the method of the characteristic function �24� we then
write the Fokker-Planck equation for the probability distribu-
tion function P�x ,v , t� near the barrier top as

�P

�t
= − v

�P

�x
− �̄b

2�t�x
�P

�v
+ �̄b�t�

��vP�
�v

+ �b�t�
�2P

�v2

+ �b�t�
�2P

�x � v
, �21�

where the subscript b signifies the dynamical quantities de-
fined at the barrier top and they are given by

�̄b�t� = −
d

dt
ln Yb�t� ,

�̄b
2�t� =

− Mb�t�ṁb�t� + Mb
2�t�

Yb�t�
,

Yb�t� = −
mb�t�

�b
2 �1 + �b

2�
0

t

Mb�t��dt�
 + Mb
2�t� ,

�b�t� = �̄b
2�t��xx

2 �t� + �̄b�t��vv
2 �t� +

1

2
�̇vv

2 �t� ,

�b�t� = �̄b
2�t��xx

2 �t� + �̄b�t��xv
2 �t� + �̇xv

2 �t� − �vv�t�2. �22�

Although bounded, these time-dependent parameters may
not always provide long time limits. In general, one must
work with frequency �̄b�t� and friction �̄b�t� for analytically
tractable models. In the absence of external noise �b�t�
=kbT�̄b�t� and �b�t�= �kBT /�b

2���̄b
2−�b

2�, and in the Markov-
ian limit �̄b�t�=���t�, �̄b=�b and, consequently, �b�t�, van-
ish.

To calculate the stationary distribution near the bottom of
the left well, we now linearize the potential V�x� around x
�x0. The corresponding Fokker-Planck equation describing
the dynamics at the source well can again be constructed
using the method of the characteristic function

�P

�t
= − v

�P

�x
− �̄0

2�t�x
�P

�v
+ �̄0�t�

��vP�
�v

+ �0�t�
�2P

�v2

+ �0�t�
�2P

�x � v
�23�

with

�̄0�t� = −
d

dt
ln Y0�t� ,

�̄0
2�t� = −

M0�t�ṁ0�t� + M0
2�t�

Y0�t�
,

Y0�t� = −
m0�t�

�0
2 �1 + �0

2�
0

t

M0�t��dt�
 + M0
2�t� ,

�0�t� = �̄0
2�t��xx

2 �t� + �̄0�t��vv
2 �t� +

1

2
�̇vv

2 �t� ,

�0�t� = �̄0
2�t��xx

2 �t� + �̄0�t��xv
2 �t� + �̇xv

2 �t� − �vv
2 �t� . �24�

Here, the subscript 0 signifies the dynamical quantities cor-
responding to the bottom of the left-hand well. As mentioned
earlier, in the absence of external noise and in the Markovian
limit, �0�t� vanishes with �̄0�t�=���t�, �0�t�=�kBT, and �̄0

=�0. As a result, we recover the Fokker-Planck equation for
a harmonic oscillator with frequency �0. Thus, we identify
Eq. �23� as the generalized version of the non-Markovian
Fokker-Planck equation for a harmonic oscillator which is
driven by two externally correlated noise processes. At this
juncture it is pertinent to mention the fact that the form of
our Eq. �23� is exactly identical with that of the non-
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Markovian Fokker-Planck equation for harmonic oscillator
derived earlier by Adelman �25�. The steady-state ��P�x
�x0 ,v� /�t=0� solution of Eq. �23� is given by

Pst
0 �x,v� =

1

Z
exp�−

v2

2D0
−

�̄0x2

D0 + �0

 , �25�

where D0=�0 / �̄0. The quantities �0, �0, and �̄0 are the long
time �steady-state� limits of the time-dependent functions
�0�t�, �0�t�, and �̄0�t�, respectively, and Z is the normaliza-
tion constant. The above solution �25� can be verified by
directly putting it into the steady-state version ��P /�t=0� of
Eq. �23�. The distribution function �25� is the steady-state
counterpart of the equilibrium Boltzmann distribution
�exp�−�v2+V�x�� /kBT�� for a nonequilibrium open system.
In the limit of pure thermal processes, i.e., in the absence of
external fluctuating driving force, it is easy to recover the
equilibrium Boltzmann distribution from �25�. The justifica-
tion for using the distribution �25� is the following. In the
traditional theory of activated rate processes within the
framework of pure thermal fluctuations the equilibrium Bolt-
zmann distribution is necessary to initially thermalize the
reactant state �1,2�. On the other hand, for the nonequilib-
rium open system, a constant input of energy through the
external fluctuating driving force forbids the system to attain
the equilibrium state, hence the system approaches �as in our
case� toward the steady state �25�, an analog of equilibrium
state, to initially energize the reactant state by the effective
temperaturelike quantity �a complex function of �̄0, �0, and
�0� embedded in the distribution function �25�.

To calculate the stationary current across the barrier top
�for pure thermal processes� within the framework of Kram-
ers’ original reasoning �1�, one considers an equilibrium
Boltzmann distribution multiplied by a propagator G�x ,v�
and uses it to solve the Fokker-Planck equation �21�. From
the reasoning of the previous paragraph, it is clear that in our
analysis, the equilibrium distribution should be replaced by a
SSD that contains all the information about the potential
around the barrier top and the effective temperaturelike
quantity for the nonequilibrium open system. In the limit of
pure thermal processes, i.e., in the absence of any external
fluctuations, the SSD should reduce to the equilibrium Boltz-
mann distribution. Thus, in the light of Kramers’ ansatz we
consider a solution of Eq. �21� at the stationary limit as

Pst
b �x,v� = exp�−

v2

2Db
−

Ṽ�x�
Db + �b


G�x,v� , �26�

where Db=�b / �̄b and �b are the long time limits of the cor-
responding time-dependent quantities calculated at the bar-

rier top region and Ṽ�x� is the linearized potential near the
barrier top �x�0� with a renormalization in its frequency,

Ṽ�x� � Eb −
1

2
�̄b

2x2, �27�

where �̄b is the long time limit of �̄b�t� and Eb is the barrier
height. In writing Eq. �27� it has been assumed that the po-
sition of the maxima of the potential V�x� and the barrier
height remains unchanged while considering the memory ef-

fect in the dynamics. The non-Markovian effects are reflected
only in the frequency. The ansatz of the form �26� denoting
the SSD is motivated by the local analysis near the source
well and the top of the barrier in the Kramers’ sense. Insert-
ing Eq. �26� in Eq. �21� we obtain in the steady state
��P /�t=0� an equation for the function G�x ,v� as

− �1 +
�b

Db

v

�G

�x
− � Db

Db + �b
�̄b

2x + �̄bv
 �G

�v
+ �b

�2G

�v2

+ �b
�2G

�x � v
= 0. �28�

We now introduce a variable u as

u = v + ax , �29�

where a is a constant to be determined. With the help of the
transformation �29�, Eq. �28� reduces to

��b + a�b�
d2G

du2 − � Db

Db + �b
�̄b

2x + ��̄b + a�1 +
�b

Db

�v�dG

du

= 0. �30�

At this point, we define

Db

Db + �b
�̄b

2x + ��̄b + a�1 +
�b

Db

�v = − �u , �31�

where � is another constant to be determined. From Eqs.
�29� and �31�, we find that the constant a has two values,

a± = −
B

2A
±� B2

4A2 +
C

A
�32�

with

A = �1 +
�b

Db

, B = �̄b, and C =

Db

�Db + �b�
�̄b

2.

With the help of Eq. �31�, Eq. �30� can then be written as

d2

du2G + �
d

du
G = 0, �33�

where

� =
�

�b + a�b
. �34�

The general solution of Eq. �33� is

G�u� = G2�
0

u

exp�−
1

2
�z2
dz + G1, �35�

where G1 and G2 are the constants of integration. We look
for a solution which vanishes for large x. This condition is
satisfied if the integration in Eq. �35� remains finite. It is easy
to understand that the integral in Eq. �35� converges for �u�
→� if and only if � is positive. The positive value of �
depends on the sign of a and we observe that the negative
value of a, i.e., a− guarantees the positive value of �.

To determine the value of G1 and G2, we now demand
that G�x ,v�→0 for x→ +� and for all v. This condition
yields G1=G2

�� /2�, so that
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G�u� = G2�� �

2�

1/2

+ �
0

u

exp�−
1

2
�z2
� . �36�

Consequently, the stationary solution near the barrier top be-
comes

Pst
b �x � 0,v� = G2 exp�−

V�0�
Db + �b


�� �

2�

1/2

exp�−
v2

2Db



+ g�x � 0,v�exp�−
v2

2Db

� �37�

with

g�x,v� = �
0

v+a−x

exp�−
1

2
�z2
dz . �38�

Since the steady-state current j across the barrier is defined
as

j = �
−�

+�

vPst
b �x � 0,v�dv , �39�

we obtain using Eq. �37�,

j = G2Db� 2�

� + Db
−1
1/2

exp�−
Eb

Db + �b

 . �40�

To obtain the remaining constant G2, we note that as
x→−�, the term G2��� /2�+g� in Eq. �36� reduces to
G2

�� /2�. We then obtain the reduced distribution function
�26� in x as

Pst
b �x → − �� = 2�G2�Db

�

1/2

exp�−
Ṽ�x�

D0 + �0

 . �41�

Similarly, we derive the reduced distribution function in the
left-hand well around x�x0 as

P̃st
0 �x� =

1

z
�2�D0 exp�−

E0

D0 + �0

 , �42�

where we have used Eq. �25� and employed the expansion of

Ṽ�x� as

Ṽ�x� � E0 +
1

2
�̄0

2�x − x0�2, x � x0. �43�

At this point, we impose another condition that at x�x0, the
reduced distribution function �41� must go over to the sta-
tionary reduced distribution function �42� at the bottom of
the left-hand well. This matching condition �14–16� along
with the normalization condition, �−�

+�Pst
0 �x ,v�dxdv=1 gives

the value of the remaining constant G2 as

G2 = � �

Db

1/2 �̄0

�8�3�D0 + �0��1/2 . �44�

Hence, from Eq. �40�, we get the expression for the normal-
ized current or barrier-crossing rate,

k =
�̄0

2�

Db

�D0 + �0�1/2� �

1 + �Db

1/2

exp�−
E

Db + �b

 ,

�45�

where E �=Eb−E0� is the activation energy. In passing we
note that the temperature due to internal thermal noise, the
strength of the external noise, the correlation times, and the
damping constant, are all buried in the expression for the
generalized escape rate for the open system through the pa-
rameters D0, Db, �0, �b, and �. We also note that k is an
implicit function of the degree of correlation �.

From the structure of Eq. �45� it is difficult to understand
the role of various parameters �internal or external� on the
rate expression. We thus consider different limiting cases in
the following to see the behavior of the rate expression.

First, we consider the case with no external driving and
the internal thermal noise being �-correlated, i.e.,

��t� = ��t� = 0 and 	f�t�f�t��
 = 2�kBT��t − t�� .

Making use of the abbreviations in Eqs. �22� and �24�, one
can show that for the pure �-correlated thermal process we
have �0=�b=0, Db=D0=kBT, �=� / ��kBT�, �=−�a−+��,
and a−=−�� /2�− ���2 /4�+�b

2�1/2. Thus, the general expres-
sion �45� reduces to the classical expression for the Kramers
rate,

kKramers =
�0

2��b
���2

4
+ �b

2
1/2

−
�

2
�exp�−

E

kBT

 . �46�

Second, we consider the case with no external noise but
the internal dynamics is non-Markovian with an exponen-
tially decaying memory kernel. In this limit ��t�=��t�=0,
	f�t�f�t��
= �D /	c�exp�−�t− t�� /	c�, where D denotes the
noise strength �D=2�kBT� and 	c refers to the correlation
time of the internal noise processes. Then, from Eqs. �22�
and �23� we obtain

D0 = Db = kBT ,

�0 = kBT�1 −
�̄0

2

�0
2
, �b = kBT�1 −

�̄b
2

�b
2
 ,

� = − ��̄b + � �̄b
2

�b
2
a−� ,

a− =
�b

2

�̄b
2�−

�̄b

2
− � �̄b

2

4
+ �̄b
1/2� ,

and, hence, the rate becomes

kmemory =
�0

2��b
�� �̄b

2

4
+ �̄b

2
1/2

−
�̄b

2
�exp�−

E

kBT

 .

�47�

Equation �47� is the rate expression for the pure thermal
process with exponentially decaying memory kernel and was
derived several years earlier by Grote-Hynes �27� and
Hänggi-Mojtabai �28�.
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Third, we consider the case where the correlation times of
all the noise processes �internal and external� are vanishingly
small,

	f�t�f�t��
 = 2�kBT��t − t�� ,

	
�t�
�t��
 = 2DR��t − t�� ,

where DR is the external noise strength in the limit 	R→0
�see Eq. �5�� and � is the dissipation due to internal thermal
noise processes. In such a case, we have

D0 = DR = kBT +
DR

�
, �0 = �b = 0,

� = − �a− + �� and a− = −
�

2
− ��2

4
+ �b

2
1/2

,

and, hence, the rate becomes

k =
�0

2��b
���2

4
+ �b

2
1/2

−
�

2
�exp�−

�Eb

�kBT + DR

 . �48�

In the limit DR→0 �i.e., D�→0 and D�→0 simultaneously�
we recover the Kramers’ results �46�. Also, the degree of
correlation � is implicitly present in the expression of DR
�see Eq. �5��. In the expression �48� in addition to T,
DR / ��kB� defines a new effective temperature due to external
driving. In a different context where the heat bath is modu-
lated by an external fluctuating field we have also encoun-
tered the appearance of the effective temperature �14,16�.

Finally, to study the effect of degree of correlation of
external noise on the generalized escape rate �45�, we con-
sider the case where the fluctuation in the dynamics is only
due to an external source, i.e., f�t�=0. The statistical proper-
ties of the correlated external noises are given by Eq.
�3a�–�3d�. Since, in this case, the dissipation is independent
of the fluctuations, we may assume Markovian relaxation so
that ��t�=���t�. We then obtain after some lengthy algebra
from the general expression �45�,

�0 =
DR

1 + �	R + �0
2	R

2 , �b =
DR

1 + �	R − �b
2	R

2 ,

�0 =
DR	R

1 + �	R + �0
2	R

2 , �0 =
DR	R

1 + �	R − �b
2	R

2 ,

� = − � − �1 + �	R�a−,

a− =
1

�1 + �	R��−
�

2
− ��2

4
+ �b

2
1/2� ,

where DR and 	R are given by �5� and �6�, respectively. Con-
sequently, the rate becomes

k =
�0

2��b
�1 + �	R + �0

2	R
2

1 + �	R − �b
2	R

2 
1/2���2

4
+ �b

2
1/2

−
�

2
�

� exp�−
��1 + �	R − �b

2	R
2�

DR�1 + �	R�
E
 . �49�

It is interesting to note that the expression �49� denotes the

escape rate induced by pure correlated external fluctuations,
which apart from depending on the strengths and correlation
times of the noise processes, depends crucially on the degree
of correlation of the external fluctuations through the param-
eters DR and 	R. The absence of thermal temperature and the
appearance of the dissipation constant � demonstrate the
nonthermal origin of the noise processes as well as the ab-
sence of the FDR in the dynamics.

IV. NUMERICAL IMPLEMENTATION

To judge the potentiality and applicability of our recently
developed method for computation of the rate of barrier-
crossing process, we discuss here both the details of the
working equations from the point of view of the numerical
implementation and the corresponding simulation of our
method. To check the validity and applicability of our model
from the point of view of computational implementation, we
consider the dynamics in a bistable potential V�x�= �x4 /4�
− �x2 /2�, so that the activation energy becomes E=1/4. We
then numerically solve the Langevin equation �1� by employ-
ing stochastic Heun’s algorithm �29,30�. The numerical rate
has been defined as the inverse of the mean first passage time
�14,16,31� and has been calculated by averaging over 10 000
trajectories. In our simulation we have always used 	�=	�

=	=1 such that the effective correlation time 	R is always
equal to 1, independent of values of the other parameters. To
ensure the stability of our simulation, we have used a small
integration time step �t=0.001 so that �t /	R�1. To com-
pare our theoretical prediction with numerical simulation we
consider the case where the system is solely driven by an
external correlated colored noise �see Eq. �49��. As the de-
gree of correlation between the two noise processes is in-
creased, the strength of effective noise strength DR increases
�see Eq. �5��. This effectively pumps more energy into the
system through which the escape rate should increase. In
Fig. 1 we see this effect clearly, where the escape rate k is

FIG. 1. Barrier-crossing rate k as a function of dissipation con-
stant � for two different values of effective noise strength DR. The
solid lines are drawn from the theoretical expression, Eq. �49�, and
the symbols are due to numerical simulation of Eq. �1�. The values
of the parameters used are De=D�=2, 	e=	�=	=1, �=0 �open
circle� and �=1 �open square�. Inset: k as a function of DR for �
=5 and 0���1. Other parameters are the same as in the main
figure.

GENERALIZATION OF THE ESCAPE RATE FROM A … PHYSICAL REVIEW E 76, 021125 �2007�

021125-7



plotted as a function of the dissipation constant � �in the
limit of moderate-to-large friction regime� for two different
values of effective noise strength DR, which are evaluated by
using two extreme values of the degree of correlation � �0
and 1�. In the inset we show more explicitly how the system
receives more energy through DR as the degree of correlation
increases. This behavior suggests that in a properly designed
experiment one can enhance the escape rate by externally
controlling the degree of correlation between the external
fluctuations.

V. CONCLUSIONS

In this paper, we have generalized the Kramers’ theory of
activated rate processes for a nonequilibrium open system
where the system is driven by two external cross-correlated
noise processes with the assumption that the underlying dy-
namics is non-Markovian. The theory takes into account both
the external and internal fluctuations in a unified way. The
external fluctuations considered are stationary, Gaussian. Our
treatment is valid for the intermediate-to-strong damping
limit. We have shown that not only the motion at the barrier
top is influenced by the cross correlation between the exter-

nal fluctuations, it has an important role to play in establish-
ing the stationary state near the bottom of the source well for
the open system. The stationary distribution function in the
well depends significantly on the degree of correlation of the
external noise processes. We then derived the generalized
Kramers’ rate for the open system and examined several lim-
iting cases. To establish the applicability and potentiality of
our recently developed method, we then numerically simu-
lated the dynamics in a model bistable potential and com-
pared it with one of the limiting cases. Our results generated
via numerical simulation reflect a good agreement with the
corresponding values obtained analytically. Our numerical
analysis clearly depicts that the escape rate can be enhanced
by increasing the degree of correlation between the external
fluctuations.

ACKNOWLEDGMENTS

Two of the authors �J.R.C. and S.C.� would like to ac-
knowledge the UGC, Delhi �PSW-103/06-07�ERO� and 32-
304/2006�SR�� for financial support. One of the authors
�S.K.B.� acknowledges financial support from Department of
Physics, Virginia Tech.

�1� H. A. Kramers, Physica 7, 284 �1940�.
�2� P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62,

251 �1990�.
�3� V. I. Mel’nikov, Phys. Rep. 209, 1 �1991�.
�4� E. Pollak and P. Talkner, Chaos 15, 026116 �2005�.
�5� A. Simon and A. Libchaber, Phys. Rev. Lett. 68, 3375 �1992�.
�6� E. W.-G. Diau, J. L. Herek, Z. H. Kim, and A. H. Zewail,

Science 279, 847 �1998�.
�7� L. I. McCann, M. I. Dykman, and B. Golding, Nature 402, 785

�1999�.
�8� U. Weiss, Quantum Dissipative Systems �World Scientific, Sin-

gapore, 1999�.
�9� A. Nitzan, Chemical Dynamics in Condensed Phases �Oxford

University Press, Oxford, 2006�.
�10� R. Kubo, M. Toda, N. Hashitsume, and N. Saito, Statistical

Physics II: Nonequilibrium Statistical Mechanics, 2nd ed.
�Springer, Berlin, 1995�.

�11� R. Zwanzig, J. Stat. Phys. 9, 215 �1973�; M. I. Dykman and
M. A. Krivoglaz, Phys. Status Solidi B 48, 497 �1971�.

�12� K. Lindenberg and B. J. West, The Nonequilibrium Statistical
Mechanics of Open and Closed Systems �VCH, New York,
1990�.

�13� W. Horsthemke and R. Lefever, Noise-Induced Transitions
�Springer, Berlin, 1994�.

�14� J. R. Chaudhuri, S. K. Banik, B. C. Bag, and D. S. Ray, Phys.
Rev. E 63, 061111 �2001�.

�15� S. K. Banik, J. Ray Chaudhuri, and D. S. Ray, J. Chem. Phys.
112, 8330 �2000�.

�16� J. R. Chaudhuri, D. Barik, and S. K. Banik, Phys. Rev. E 73,
051101 �2006�; 74, 061119 �2006�.

�17� I. I. Fedchenia, J. Stat. Phys. 52, 1005 �1988�.
�18� A. Fulinski and T. Telejko, Phys. Lett. A 152, 11 �1991�.
�19� A. J. R. Madureira, P. Hänggi, and H. S. Wio, Phys. Lett. A

217, 248 �1996�.
�20� D. Mei, C. Xie, and L. Zhang, Phys. Rev. E 68, 051102

�2003�.
�21� C. J. Tessone, H. S. Wio, and P. Hänggi, Phys. Rev. E 62, 4623

�2000�, and references therein.
�22� C. Xie, D. Mei, L. Cao, and D. J. Wu, Eur. Phys. J. B 33, 83

�2003�; P. Majee and B. C. Bag, J. Phys. A 37, 3353 �2004�.
�23� N. G. van Kampen, Stochastic Processes in Physics and

Chemistry �North-Holland, Amsterdam, 1992�, Sec. IX.5.
�24� J. Masoliver and J. M. Porrà, Phys. Rev. E 48, 4309 �1993�.
�25� S. A. Adelman, J. Chem. Phys. 64, 124 �1976�.
�26� The reduced distribution function is defined as P̃st�x�

=�−�
+�Pst�x ,v�.

�27� R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 �1980�.
�28� P. Hänggi and F. Mojtabai, Phys. Rev. A 26, 1168 �1982�.
�29� T. C. Gard, Monographs and Textbooks in Pure and Applied

Mathematics �Marcel Dekker, New York, 1987�, Vol. 114.
�30� R. Toral, in Computational Field Theory and Pattern Forma-

tion, edited by P. L. Garrido and J. Marro, Lecture Notes in
Physics Vol. 448 �Springer-Verlag, Berlin, 1995�.

�31� C. Mahanta and T. G. Venkatesh, Phys. Rev. E 58, 4141
�1998�; D. Barik, B. C. Bag, and D. S. Ray, J. Chem. Phys.
119, 12973 �2003�.

RAY CHAUDHURI, CHATTOPADHYAY, AND BANIK PHYSICAL REVIEW E 76, 021125 �2007�

021125-8


